API reference
Combinations
Combinatorics.CoolLexCombinations
— TypeCoolLexCombinations
Produce $(n,k)$-combinations in cool-lex order.
Reference
Ruskey, F., & Williams, A. (2009). The coolest way to generate combinations. Discrete Mathematics, 309(17), 5305-5320.
Combinatorics.combinations
— Methodcombinations(a, n)
Generate all combinations of n
elements from an indexable object a
. Because the number of combinations can be very large, this function returns an iterator object. Use collect(combinations(a, n))
to get an array of all combinations.
Combinatorics.combinations
— Methodcombinations(a)
Generate combinations of the elements of a
of all orders. Chaining of order iterators is eager, but the sequence at each order is lazy.
Combinatorics.multiset_combinations
— Methodmultiset_combinations(a, t)
Generate all combinations of size t
from an array a
with possibly duplicated elements.
Combinatorics.powerset
— Functionpowerset(a, min=0, max=length(a))
Generate all subsets of an indexable object a
including the empty set, with cardinality bounded by min
and max
. Because the number of subsets can be very large, this function returns an iterator object. Use collect(powerset(a, min, max))
to get an array of all subsets.
Combinatorics.with_replacement_combinations
— Methodwith_replacement_combinations(a, t)
Generate all combinations with replacement of size t
from an array a
.
Factorials
Base.factorial
— Methodfactorial(n, k)
Compute $n!/k!$.
Combinatorics.derangement
— Methodderangement(n)
Compute the number of permutations of n
with no fixed points, also known as the subfactorial. An alias subfactorial
for this function is provided for convenience.
Combinatorics.multinomial
— Methodmultinomial(k...)
Compute the multinomial coefficient $\binom{n}{k_1,k_2,...,k_i} = \frac{n!}{k_1!k_2! \cdots k_i!}, n = \sum{k_i}$. Throws an OverflowError
when the input is too large.
See Also: binomial
.
Examples
julia> # (x+y)^2 = x^2 + 2xy + y^2
julia> multinomial(2, 0)
1
julia> multinomial(1, 1)
2
julia> multinomial(0, 2)
1
julia> multinomial(10, 10, 10, 10)
ERROR: OverflowError: 5550996791340 * 847660528 overflowed for type Int64
Stacktrace:
[...]
External links
- Definitions on DLMF
- Multinomial theorem on Wikipedia
Combinatorics.partialderangement
— Methodpartialderangement(n, k)
Compute the number of permutations of n
with exactly k fixed points.
Multinomials
Combinatorics.multiexponents
— Methodmultiexponents(m, n)
Returns the exponents in the multinomial expansion (x₁ + x₂ + ... + xₘ)ⁿ.
For example, the expansion (x₁ + x₂ + x₃)² = x₁² + x₁x₂ + x₁x₃ + ... has the exponents:
julia> collect(multiexponents(3, 2))
6-element Vector{Vector{Int64}}:
[2, 0, 0]
[1, 1, 0]
[1, 0, 1]
[0, 2, 0]
[0, 1, 1]
[0, 0, 2]
Numbers
Combinatorics.bellnum
— Methodbellnum(n)
Compute the $n$th Bell number.
Combinatorics.catalannum
— Methodcatalannum(n)
Compute the $n$th Catalan number.
Combinatorics.lassallenum
— Methodlassallenum(n)
Compute the $n$th entry in Lassalle's sequence, OEIS entry A180874.
Combinatorics.lobbnum
— Methodlobbnum(m,n)
Compute the Lobb number L(m,n)
, or the generalised Catalan number given by $\frac{2m+1}{m+n+1} \binom{2n}{m+n}$. Wikipedia : https://en.wikipedia.org/wiki/Lobb_number
Combinatorics.narayana
— Methodnarayana(n,k)
Compute the Narayana number N(n,k)
given by $\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$ Wikipedia : https://en.wikipedia.org/wiki/Narayana_number
Combinatorics.stirlings2
— Methodstirlings2(n::Int, k::Int)
Compute the Stirling number of the second kind, S(n,k)
.
Partitions
Combinatorics.integer_partitions
— Methodinteger_partitions(n)
Generates all partitions of the integer n
as a list of integer arrays, where each partition represents a way to write n
as a sum of positive integers.
See also: partitions(n::Integer)
The order of the resulting array is consistent with that produced by the computational discrete algebra software GAP.
Examples
julia> integer_partitions(2)
2-element Vector{Vector{Int64}}:
[1, 1]
[2]
julia> integer_partitions(3)
3-element Vector{Vector{Int64}}:
[1, 1, 1]
[2, 1]
[3]
julia> collect(partitions(3))
3-element Vector{Vector{Int64}}:
[3]
[2, 1]
[1, 1, 1]
julia> integer_partitions(-1)
ERROR: DomainError with -1:
n must be nonnegative
Stacktrace:
[...]
References
Combinatorics.ncpartitions
— Methodncpartitions(n::Int)
Generates all noncrossing partitions of a set of n
elements, returning them as a Vector
of partition representations.
The number of noncrossing partitions of an n
-element set is given by the n-th Catalan number Cn
: length(ncpartitions(n)) == catalannum(n)
.
See also: catalannum
Examples
julia> ncpartitions(1)
1-element Vector{Vector{Vector{Int64}}}:
[[1]]
julia> ncpartitions(3)
5-element Vector{Vector{Vector{Int64}}}:
[[1], [2], [3]]
[[1], [2, 3]]
[[1, 2], [3]]
[[1, 3], [2]]
[[1, 2, 3]]
julia> catalannum(3)
5
julia> length(ncpartitions(6)) == catalannum(6)
true
References
Combinatorics.partitions
— Methodpartitions(s::AbstractVector, m::Int)
Generate all set partitions of the elements of an array s
into exactly m
subsets, represented as arrays of arrays.
Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(s, m))
to get an array of all partitions.
The number of partitions into m
subsets is equal to the Stirling number of the second kind, and can be efficiently computed using length(partitions(s, m))
.
See also: stirlings2(n::Int, k::Int)
Examples
julia> collect(partitions('a':'c', 3))
1-element Vector{Vector{Vector{Char}}}:
[['a'], ['b'], ['c']]
julia> collect(partitions([1, 1, 1], 2))
3-element Vector{Vector{Vector{Int64}}}:
[[1, 1], [1]]
[[1, 1], [1]]
[[1], [1, 1]]
julia> collect(partitions(1:3, 2))
3-element Vector{Vector{Vector{Int64}}}:
[[1, 2], [3]]
[[1, 3], [2]]
[[1], [2, 3]]
julia> stirlings2(3, 2)
3
julia> length(partitions(1:10, 3)) == stirlings2(10, 3)
true
References
Combinatorics.partitions
— Methodpartitions(s::AbstractVector)
Generate all set partitions of the elements of an array s
, represented as arrays of arrays.
Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(s))
to get an array of all partitions.
The number of partitions of an n
-element set is given by the n-th Bell number Bn
: length(partitions(s)) == bellnum(length(s))
.
See also: bellnum
Examples
julia> collect(partitions([1, 1]))
2-element Vector{Vector{Vector{Int64}}}:
[[1, 1]]
[[1], [1]]
julia> collect(partitions(-1:-1:-2))
2-element Vector{Vector{Vector{Int64}}}:
[[-1, -2]]
[[-1], [-2]]
julia> collect(partitions('a':'c'))
5-element Vector{Vector{Vector{Char}}}:
[['a', 'b', 'c']]
[['a', 'b'], ['c']]
[['a', 'c'], ['b']]
[['a'], ['b', 'c']]
[['a'], ['b'], ['c']]
julia> length(partitions(1:10)) == bellnum(10)
true
References
Combinatorics.partitions
— Methodpartitions(n::Integer, m::Integer)
Generate all integer partitions of n
into exactly m
parts, that sum to n
.
Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(n, m))
to get an array of all partitions.
The number of partitions to generate can be efficiently computed using length(partitions(n, m))
.
See also: partitions(n::Integer)
Examples
julia> collect(partitions(4))
5-element Vector{Vector{Int64}}:
[4]
[3, 1]
[2, 2]
[2, 1, 1]
[1, 1, 1, 1]
julia> collect(partitions(4, 2))
2-element Vector{Vector{Int64}}:
[3, 1]
[2, 2]
julia> collect(partitions(4, 4))
1-element Vector{Vector{Int64}}:
[1, 1, 1, 1]
julia> collect(partitions(4, 5))
Vector{Int64}[]
julia> partitions(4, 0)
ERROR: DomainError with (4, 0):
n and m must be positive
Stacktrace:
[...]
Combinatorics.partitions
— Methodpartitions(n::Integer)
Generate all integer arrays that sum to n
.
Because the number of partitions can be very large, this function returns an iterator object. Use collect(partitions(n))
to get an array of all partitions.
The number of partitions to generate can be efficiently computed using length(partitions(n))
.
See also:
integer_partitions(n::Integer)
for a non-iterator version that returns all partitions as a arraypartitions(n::Integer, m::Integer)
for partitions with exactlym
parts.
Examples
julia> collect(partitions(2))
2-element Vector{Vector{Int64}}:
[2]
[1, 1]
julia> collect(partitions(3))
3-element Vector{Vector{Int64}}:
[3]
[2, 1]
[1, 1, 1]
julia> integer_partitions(3)
3-element Vector{Vector{Int64}}:
[1, 1, 1]
[2, 1]
[3]
julia> first(partitions(10))
1-element Vector{Int64}:
10
julia> length(partitions(10))
42
References
Combinatorics.prevprod
— Methodprevprod(a::Vector{Int}, x)
Find the largest integer not greater than x
that can be expressed as a product of powers of the elements in a
.
This function computes the largest value y ≤ x
that can be written as:
\[y = \prod a_i^{n_i} = a_1^{n_1} a_2^{n_2} \cdots a_k^{n_k} \leq x\]
where $n_i$ is a non-negative integer, k
is the length of Vector a
.
Examples
julia> prevprod([10], 1000) # 1000 = 10^3
1000
julia> prevprod([2, 5], 30) # 25 = 2^0 * 5^2
25
julia> prevprod([2, 3], 100) # 96 = 2^5 * 3^1
96
julia> prevprod([2, 3, 5], 1) # 1 = 2^0 * 3^0 * 5^0
1
Permutations
Combinatorics.derangements
— Methodderangements(a)
Generate all derangements of an indexable object a
in lexicographic order. Because the number of derangements can be very large, this function returns an iterator object. Use collect(derangements(a))
to get an array of all derangements. Only works for a
with defined length.
Examples
julia> derangements("julia") |> collect
44-element Vector{Vector{Char}}:
['u', 'j', 'i', 'a', 'l']
['u', 'j', 'a', 'l', 'i']
['u', 'l', 'j', 'a', 'i']
['u', 'l', 'i', 'a', 'j']
['u', 'l', 'a', 'j', 'i']
['u', 'i', 'j', 'a', 'l']
['u', 'i', 'a', 'j', 'l']
['u', 'i', 'a', 'l', 'j']
['u', 'a', 'j', 'l', 'i']
['u', 'a', 'i', 'j', 'l']
⋮
['a', 'j', 'i', 'l', 'u']
['a', 'l', 'j', 'u', 'i']
['a', 'l', 'u', 'j', 'i']
['a', 'l', 'i', 'j', 'u']
['a', 'l', 'i', 'u', 'j']
['a', 'i', 'j', 'u', 'l']
['a', 'i', 'j', 'l', 'u']
['a', 'i', 'u', 'j', 'l']
['a', 'i', 'u', 'l', 'j']
Combinatorics.levicivita
— Methodlevicivita(p)
Compute the Levi-Civita symbol of a permutation p
. Returns 1 if the permutation is even, -1 if it is odd, and 0 otherwise.
The parity is computed by using the fact that a permutation is odd if and only if the number of even-length cycles is odd.
Examples
julia> levicivita([1, 2, 3])
1
julia> levicivita([3, 2, 1])
-1
julia> levicivita([1, 1, 1])
0
julia> levicivita(collect(1:100))
1
julia> levicivita(ones(Int, 100))
0
Combinatorics.multiset_permutations
— Methodmultiset_permutations(a, t)
Generate all permutations of size t
from an array a
where a
may have duplicated elements.
Examples
julia> collect(permutations([1,1,1], 2))
6-element Vector{Vector{Int64}}:
[1, 1]
[1, 1]
[1, 1]
[1, 1]
[1, 1]
[1, 1]
julia> collect(multiset_permutations([1,1,1], 2))
1-element Vector{Vector{Int64}}:
[1, 1]
julia> collect(multiset_permutations([1,1,2], 3))
3-element Vector{Vector{Int64}}:
[1, 1, 2]
[1, 2, 1]
[2, 1, 1]
Combinatorics.multiset_permutations
— Methodmultiset_permutations(a)
Generate all permutations of an array a
where a
may have duplicated elements.
Combinatorics.nthperm!
— Methodnthperm!(a, k)
In-place version of nthperm
; the array a
is overwritten.
Examples
julia> a = [1, 2, 3];
julia> collect(permutations(a))
6-element Vector{Vector{Int64}}:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
julia> nthperm!(a, 3); a
3-element Vector{Int64}:
2
1
3
julia> nthperm!(a, 4); a
3-element Vector{Int64}:
1
3
2
julia> nthperm!(a, 0)
ERROR: ArgumentError: permutation k must satisfy 0 < k ≤ 6, got 0
[...]
Combinatorics.nthperm
— Methodnthperm(a, k)
Compute the k
th lexicographic permutation of the vector a
.
Examples
julia> collect(permutations([1,2]))
2-element Vector{Vector{Int64}}:
[1, 2]
[2, 1]
julia> nthperm([1,2], 1)
2-element Vector{Int64}:
1
2
julia> nthperm([1,2], 2)
2-element Vector{Int64}:
2
1
julia> nthperm([1,2], 3)
ERROR: ArgumentError: permutation k must satisfy 0 < k ≤ 2, got 3
[...]
Combinatorics.nthperm
— Methodnthperm(p)
Return the integer k
that generated permutation p
. Note that nthperm(nthperm([1:n], k)) == k
for 1 <= k <= factorial(n)
.
Examples
julia> nthperm(nthperm([1:3...], 4))
4
julia> collect(permutations([1, 2, 3]))
6-element Vector{Vector{Int64}}:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
julia> nthperm([1, 2, 3])
1
julia> nthperm([3, 2, 1])
6
julia> nthperm([1, 1, 1])
ERROR: ArgumentError: argument is not a permutation
[...]
julia> nthperm(collect(1:10))
1
julia> nthperm(collect(10:-1:1))
3628800
Combinatorics.parity
— Methodparity(p)
Compute the parity of a permutation p
using the levicivita
function, permitting calls such as iseven(parity(p))
. If p
is not a permutation then an error is thrown.
Examples
julia> parity([1, 2, 3])
0
julia> parity([3, 2, 1])
1
julia> parity([1, 1, 1])
ERROR: ArgumentError: Not a permutation
[...]
julia> parity((collect(1:100)))
0
Combinatorics.permutations
— Methodpermutations(a, t)
Generate all size t
permutations of an indexable object a
. Only works for a
with defined length. If (t <= 0) || (t > length(a))
, then returns an empty vector of eltype of a
Examples
julia> [ (len, permutations(1:3, len)) for len in -1:4 ]
6-element Vector{Tuple{Int64, Any}}:
(-1, Vector{Int64}[])
(0, [Int64[]])
(1, [[1], [2], [3]])
(2, Combinatorics.Permutations{UnitRange{Int64}}(1:3, 2))
(3, Combinatorics.Permutations{UnitRange{Int64}}(1:3, 3))
(4, Vector{Int64}[])
julia> [ (len, collect(permutations(1:3, len))) for len in -1:4 ]
6-element Vector{Tuple{Int64, Vector{Vector{Int64}}}}:
(-1, [])
(0, [[]])
(1, [[1], [2], [3]])
(2, [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]])
(3, [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]])
(4, [])
Combinatorics.permutations
— Methodpermutations(a)
Generate all permutations of an indexable object a
in lexicographic order. Because the number of permutations can be very large, this function returns an iterator object. Use collect(permutations(a))
to get an array of all permutations. Only works for a
with defined length.
Examples
julia> permutations(1:2)
Combinatorics.Permutations{UnitRange{Int64}}(1:2, 2)
julia> collect(permutations(1:2))
2-element Vector{Vector{Int64}}:
[1, 2]
[2, 1]
julia> collect(permutations(1:3))
6-element Vector{Vector{Int64}}:
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
Young diagrams
Combinatorics.MN1inner
— MethodRecursively compute the character of the partition μ
using the Murnaghan-Nakayama rule.
Combinatorics.character
— Methodcharacter(λ::Partition, μ::Partition)
Compute the character $\chi^{\lambda(\mu)}$ of the partition μ
in the λ
th irreducible representation ("irrep") of the symmetric group $S_n$.
Implements the Murnaghan-Nakayama algorithm as described in:
Dan Bernstein,
"The computational complexity of rules for the character table of Sn",
Journal of Symbolic Computation, vol. 37 iss. 6 (2004), pp 727-748.
doi:10.1016/j.jsc.2003.11.001
Combinatorics.isrimhook
— Methodisrimhook(a::Int, b::Int)
Take two elements of a partition sequence, with a
to the left of b
.
Combinatorics.isrimhook
— Methodisrimhook(ξ::SkewDiagram)
isrimhook(λ::Partition, μ::Partition)
Check whether the given skew diagram is a rim hook.
Combinatorics.leglength
— Methodleglength(ξ::SkewDiagram)
leglength(λ::Partition, μ::Partition)
Compute the leg length for the given skew diagram.
Combinatorics.partitionsequence
— Methodpartitionsequence(lambda::Partition)
Compute essential part of the partition sequence of lambda
.