Polynomial
Polynomials.Polynomial
— TypePolynomial{T<:Number}(coeffs::AbstractVector{T}, var=:x)
Construct a polynomial from its coefficients a
, lowest order first, optionally in terms of the given variable x
. x
can be a character, symbol, or string.
If $p = a_n x^n + \ldots + a_2 x^2 + a_1 x + a_0$, we construct this through Polynomial([a_0, a_1, ..., a_n])
.
The usual arithmetic operators are overloaded to work with polynomials as well as with combinations of polynomials and scalars. However, operations involving two polynomials of different variables causes an error.
Examples
DocTestSetup = quote
using Polynomials
end
julia> Polynomial([1, 0, 3, 4])
Polynomial(1 + 3*x^2 + 4*x^3)
julia> Polynomial([1, 2, 3], :s)
Polynomial(1 + 2*s + 3*s^2)
julia> one(Polynomial)
Polynomial(1.0)
Polynomials.PolyCompat.PadeApproximation.Pade
— TypePade(::Polynomial, m::Integer, n::Integer)
Pade(::Polynomial, ::Polynomial)
Return Pade approximation of polynomial.
References
Polynomials.PolyCompat.PadeApproximation.Pade
— Method(::Pade)(x)
Evaluate the Pade approximant at the given point.
Examples
julia> using SpecialFunctions, Polynomials
julia> p = Polynomial(@.(1 // BigInt(gamma(1:17))));
julia> pade = Pade(p, 8, 8);
julia> pade(1.0) ≈ exp(1.0)
true